8056

Мметодики изучения темы «Построение сечений многогранников»

Реферат

Построение сечений многогранников [0. Изучение многогранников в школьном курсе математики [0. Решение задач на построение сечений многогранников способствует развитию у человека пространственного представления и пространственного мышления. Методы построе

2013-10-24

27.94 KB

2 чел.


Чтобы скачать работу - расскажи о ней в социальной сети с помощью кнопок.

PAGE  20

Содержание

[0.1] Введение

[0.2]
1. Построение сечений многогранников

[0.3] 2.  Изучение многогранников в школьном курсе математики

[0.4]       3.  Учебник Атанасяна Л.С.

[0.5] 4.  Учебник Смирновой И.М.

[0.6] 5. Учебник Александрова А.Д.

[0.7] Заключение

[0.8]
Список литературы

Введение

Раздел стереометрии, изучающий сечения геометрических тел позволяет "заглянуть внутрь" предметов, познакомиться с их свойствами; значительно облегчает выполнение ряда заданий. Решение задач на построение сечений многогранников способствует развитию у человека пространственного представления и пространственного мышления.

Метод сечений, широко известный своей универсальностью, применяется в некоторых разделах черчения, физики, теоретической механики, сопротивления материалов, гидравлике и других естественных науках и технических дисциплинах.

К сожалению, данной теме в школьном курсе уделяется не достаточно времени.

Построение сечений используют в строительном деле, машиностроении. В качестве диагностики заболеваний в медицине широко применяют метод компьютерной томографии, основанный на получении при помощи рентгеновских аппарата снимков - сечений человеческого тела. Этим же методом пользуются историки и археологи для исследования некоторых объектов. Например, чтобы не испортить саркофаг и при этом посмотреть его содержимое. Для этого при помощи томографа делают множество снимков - поперечных сечений саркофагов, суммируя которые получают необходимую информацию. Широко применяют сечения и в ювелирном деле. Чтобы придать камню нужную форму, мастер подвергает бесформенный драгоценный камень рассечению различными плоскостями. Эти плоскости выбираются не спонтанно, а таким образом, чтобы луч, падающий на камень, создавал его сияние, многократно отразившись от его граней. Изменяя угол наклона "секущих плоскостей" и их положения мастер добивается неповторимой игры света и радужных перелива на гранях камня. Таким образом, интерес к задачам на построение сечений обусловлен не только их красотой и оригинальностью методов решения, но и их практической ценностью.

Примерное содержание основной части работы:
1. Методы построения сечений многогранников:

  •  метод следов;
  •  метод соответствия (внутреннего проектирования);
  •  комбинированный метод.

2. Решение задач на построение сечений многогранников. Сравнительный анализ различных методов построений.
3. Решение метрических задач на нахождение площадей сечений многогранников.

Задачи исследования

 1. Выяснить, какие многоугольники получатся в результате сечения правильной шестиугольной призмы плоскостью, проходящей через три точки, одна из которых совпадает с вершиной, другая является         серединой бокового ребра, а третья принадлежит боковому ребру. (Первые две точки и боковое ребро фиксированы.)

2. Найти площади полученных сечений, при заданных параметрах призмы, в зависимости от положения третьей точки на боковом ребре.
3. Рассмотреть зависимость формы и площади сечения правильной шестиугольной призмы от выбора трёх точек на серединах рёбер призмы.
1

Цель работы –рассмотреть методики изучения темы «Построение сечений многогранников» .


1. Построение сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  1.  Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2.  В задачах используются в основном простейшие многогранники.
  3.  Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  •  что значит построить сечение многогранника плоскостью;
    •  как могут располагаться относительно друг друга многогранник и плоскость;
    •  как задается плоскость;
    •  когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  •  тремя точками;
    •  прямой и точкой;
    •  двумя параллельными прямыми;
    •  двумя пересекающимися прямыми, построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

  •  Метод следов.
    •  Метод вспомогательных сечений.
    •  Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

  •  построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  •  построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  •  построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  •  построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  •  построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

В федеральный перечень учебников по геометрии для 10-11 класов входят учебники авторов:

  •  Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  •  Погорелова А.В. (Геометрия, 7-11);
  •  Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  •  Смирновой И.М. (Геометрия, 10-11);
  •  Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим  учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему «Построение сечений многогранников» выделено два часа. В 10 классе в теме «Параллельность прямых и плоскостей» после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа «Задачи на построение сечений». Рассматриваются сечения тетраэдра и параллелепипеда. И тема «Параллельность прямых и плоскостей» завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).2

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе «Многогранники»: один – на изучение темы «Изображение призмы и построение ее сечений», второй – на изучение темы «Построение пирамиды и ее плоских сечений» и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.3

2.  Изучение многогранников в школьном курсе математики

В школьных учебниках после изучения «бесконечно-протяженных» и в силу этого весьма абстрактных геометрических фигур: прямых и плоскостей (вернее сказать, их взаимного расположения в пространстве) изучаются зримые, «конечные», даже, можно сказать, осязаемые пространственные фигуры, и в первую очередь многогранники. Многогранник {точнее, модель многогранника) можно изготовить, повертеть в руках, «развернуть» его поверхность или даже «разрезать» - посмотреть на сечение. В данной теме это весьма существенно, и учителю необходимо использовать значительно расширившиеся возможности привлечения наглядности, наглядных средств (не забывая уделять достаточное внимание и построению проекционных чертежей). О наглядных средствах поговорим немного позднее.

Можно указать на такие две проводимые методологические линии в изучении геометрии многогранников: это их классификация и изучение различного рода количественных характеристик. Конечно, эти линии переплетаются между собой. В данной теме рассматриваются простые характеристики - численные: длины ребер, высоты, величины углов, площади поверхностей, - и качественные, типа «правильности». Собственно говоря, качественные характеристики - это одна из основ классификации многогранников. Если исключить стоящие чуть в стороне от ведущей линии курса правильные многогранники (пять «платоновых тел»), то логическую схему классификации «школьных» многогранников можно описать примерно следующим образом. Рассматриваются (и строго определяются) только два вида многогранников: призмы и пирамиды. Конечно, внутри этих видов проводится грубая классификация по числу углов - призмы и пирамиды бывают n-угольными, где n = 3, 4, 5,… . Более детальная классификация - по взаимному расположению ребер и граней, по виду граней. Для призм  она относительно «разветвленная»:

И далее:

Школьная классификация пирамид менее разветвленная:

Первая задача учителя - добиться от всех учащихся знания этой классификации в том виде, в каком она подается в учебном пособии, т. е. в виде соответствующих определений. И у ученика, и у учителя при изучении данной темы может возникнуть вполне естественный вопрос: почему столько внимания (и столько задач) посвящается всего лишь трем частным типам многогранников - параллелепипедам, правильным призмам и правильным пирамидам? Причин по крайней мере три: 1) эти многогранники нужны для дальнейшего построения теории (главным образом теории объемов); 2) они обладают симметрией, как многие формы природы и творения рук человеческих (скажем, архитектурные формы); 3) они обладают «хорошими свойствами», т. е. для них можно сформулировать и доказать достаточно простые теоремы.

Последнее преимущество обусловлено свойствами симметричности; с другой стороны, как раз «хорошие свойства» и используются в теоретических целях. Все теоремы этой темы относятся к «избранным» многогранникам, причем совсем просто доказываются и наполовину имеют вычислительный характер (т. е. вид формул). Поэтому вторая задача учителя - добиться знания учащимися всех теорем (с доказательствами).

Третья по счету, но первоочередная для учителя задача - научить школьников решать задачи. Практически все задачи (упражнения) темы вычислительные, большую часть из них составляют простые или совсем простые задачи, и здесь перед учителем раскрываются большие возможности в  продолжение линии обучения школьников эвристическим приемам решения задач. В задачах находят отражение и главные методологические идеи решения задач - аналогия стереометрии с планиметрией, сведение стереометрических задач к планиметрическим.

Рассмотрим изучение темы «Многогранники» в школьных учебниках. Для примера возьмем учебники разного уровня изложения материала: предназначенные для общеобразовательной школы, для гуманитарных классов, для классов с математическим уклоном.4

      3.  Учебник Атанасяна Л.С.

Рассмотрим изучение темы «Многогранники» по учебнику Атанасяна. Этот учебник предназначен для общеобразовательной школы. Остановимся на нем подробнее.

На изучение данной темы отводится 12 уроков. Ниже приведено поурочное планирование в таблице.

Номер   урока

Содержание учебного материала

1-4

§1. Понятие многогранника. Призма.

Понятие многогранника. Призма. Площадь поверхности призмы. ( п.25-27)

5-9

§2. Пирамида.

Пирамида. Правильная пирамида. Усеченная пирамида. Площадь поверхности пирамиды. (п.28-30)

10

§3. Правильные многогранники.

Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильных многогранников. (п. 31-33)

11

Контрольная работа.

12

Зачет по теме.

Еще до изучения темы «Многогранники» учащиеся знакомятся с их простейшими видами в главе 1 §4 «Тетраэдр и параллелепипед». На их изучение отводится 5 часов. Понятия тетраэдра и параллелепипеда вводятся в данной главе для того, чтобы рассмотрение их свойств, построение сечений способствовали углублению понимания вопросов взаимного расположения прямых и плоскостей, поэтому необходимо, чтобы решение задач сопровождалось ссылками на аксиомы, определения и теоремы.

При объяснении понятий тетраэдра и параллелепипеда необходимо подчеркнуть, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (многоугольников).

Для формирования у учащихся представления о способах изображения на чертеже тетраэдра и параллелепипеда полезно с помощью диапроектора показать на экране различные проекции их каркасных моделей. Полезно также обсудить простейшие свойства параллельной проекции.

В результате изучения  параграфа учащиеся  должны уметь объяснить, что называется тетраэдром, параллелепипедом, указывать и называть на моделях и чертежах элементы этих многогранников; знать свойства граней и диагоналей параллелепипеда; уметь изображать тетраэдр и параллелепипед, строить их сечения.

Основная цель темы «Многогранники» - дать учащимся систематические сведения об основных видах многогранников.

Учащиеся уже знакомы с такими понятиями, как тетраэдр и параллелепипед, и теперь им предстоит расширить представления о многогранниках и их свойствах. В учебнике нет строгого математического определения многогранника, а приводится лишь некоторое описание, так как строгое определение громоздко и трудно не только для понимания учащимися, но и для его применения. Такое наглядное представление о геометрических телах вполне достаточно для ученика на первичном уровне рассмотрения понятия. Рассмотрим определение геометрического тела, в связи с чем вводится ряд новых понятий. Этот материал могут прочитать самостоятельно наиболее подготовленные учащиеся, проявляющие повышенный интерес к математике.

На уроке, используя модели многогранников (куб, параллелепипед, тетраэдр, призма), необходимо назвать учащимся их элементы: вершины, грани, ребра, диагонали граней и диагонали рассматриваемых тел. Важно, чтобы школьники усвоили эти понятия, что позволит правильно понимать формулировки задач, не смешивая названия различных элементов в процессе их решения. После этого вводится понятие выпуклого и не выпуклого многогранников; обязательно учащимся показать примеры невыпуклых многогранников.

Призма А1 А2… Аn В1 В2 …Вn определяется как многогранник, составленный из двух равных многоугольников А1 А2… Аn и В1 В2 …Вn , расположенных в параллельных плоскостях, и n-параллелограммов А1 А2 В2 В1, …, Аn А1 В1 Вn. Далее вводятся  определения элементов призмы, с помощью моделей разъясняются понятия прямой призмы, наклонной призмы, правильной призмы. Необходимо обратить внимание учащихся на то, что четырехугольная призма – это знакомый им параллелепипед. У произвольного параллелепипеда все шесть граней – параллелограммы, а боковые грани – прямоугольники, у прямоугольного параллелепипеда все шесть граней – прямоугольники. При изучении площади поверхности призмы доказывается теорема о площади боковой поверхности прямой призмы.

Пирамида определяется как многогранник, составленный из n-угольника А1 А2 … Аn и n-треугольников. При введении понятия правильной пирамиды следует акцентировать внимание учащихся на двух моментах: основание пирамиды – правильный многоугольник, и отрезок, соединяющий вершину пирамиды с центром ее основания, является высотой пирамиды. Можно устно доказать, что боковые грани правильной пирамиды – равные равнобедренные треугольники. После этого вводится понятие апофемы правильной пирамиды (высота боковой грани правильной пирамиды, проведенной из ее вершины), при этом нужно подчеркнуть, что этот термин употребляется только для правильной пирамиды, хотя у неправильной пирамиды также могут быть равны высоты боковых граней.

При изучении теоремы о площади боковой поверхности правильной пирамиды полезна символическая запись доказательства. Пусть сторона основания n-угольной пирамиды равна а, апофема равна d, S - площадь боковой грани. Тогда

Sбок=nS,   Sбок=nad,  Sбок=(na)∙d,   Sбок= Pd,  где P – периметр основания пирамиды.

Далее вводится понятие усеченной пирамиды. Плоскость, параллельная основанию пирамиды, разбивает ее на два многогранника: один из них является пирамидой, а другой называется усеченной пирамидой. Усеченная пирамида – это часть полной пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию данной пирамиды. При выполнении рисунков к задачам на усеченную пирамиду удобно вначале начертить полную пирамиду, а затем выделить усеченную пирамиду.

При введении понятия правильной усеченной пирамиды надо отметить, что ее основания – правильные многоугольники, а боковые грани – равные равнобедренные трапеции; высоты этих трапеций называются апофемами усеченной пирамиды. Также выводится  формула площади боковой поверхности правильной усеченной пирамиды.

Последнее, что изучается в теме «Многогранники» в учебнике, это симметрия в пространстве и понятие правильного многогранника. Основными понятиями здесь являются понятия симметричных точек относительно точки, прямой, плоскости; понятия центра, оси, плоскости симметрии фигуры. При введении понятия правильного многогранника нужно подчеркнуть два условия, входящие в определение: а) все грани такого многогранника – равные правильные многоугольники; б) в каждой вершине многогранника сходится одно и то же число ребер. В учебнике доказано, что существует пять видов правильных многогранников и не существует правильного многогранника, гранями которого являются правильные n-угольники при n ≥ 6. Целесообразно предложить учащимся изготовить дома  модели правильных многогранников. Для этой цели надо использовать развертки, изображенные в учебнике.

Таким образом, в данном учебнике многогранники изучаются  с опорой на наглядность, предметы окружающей действительности.

Весь теоретический материал темы относится либо к прямым призмам, либо к правильным призмам и правильным пирамидам. Все теоремы доказываются достаточно просто, результаты могут быть записаны формулами, поэтому в теме много задач вычислительного характера, при решении которых отрабатываются умения учащихся пользоваться сведениями из тригонометрии, формулами площадей, решать задачи с использованием таких понятий, как «угол между прямой и плоскостью», «двугранный угол» и др.5

4.  Учебник Смирновой И.М.

Данный учебник предназначен для преподавания геометрии  10-11 классах гуманитарного профиля. По сравнению с традиционным изложением в учебнике несколько сокращен теоретический материал, больше внимания уделяется вопросам исторического, мировоззренческого и прикладного характера.

Особенностью  учебника является раннее введение пространственных фигур, в том числе многогранников, «Основные пространственные фигуры». Цель – сформировать представления учащихся об основных понятиях стереометрии, ознакомить с пространственными фигурами и моделированием многогранников. Вводиться понятие многогранника как пространственной фигуры, поверхность которой состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны этих многоугольников называются ребрами многогранника, а вершины многоугольников – вершинами многогранника.

Учащимся демонстрируются следующие многогранники:

 - куб – многогранник, поверхность которого состоит из шести квадратов;

 -  параллелепипед – многогранник, поверхность которого состоит из шести параллелограммов;

 -  прямоугольный параллелепипед – параллелепипед, у которого грани – прямоугольники;

 -  призма – многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, называемых боковыми гранями (причем у каждого параллелограмма два противоположных ребра лежат на основаниях призмы);

 -  прямая призма – призма, боковые грани которой - прямоугольники; правильная призма – прямая призма, основаниями которой являются правильные многоугольники;

 -  пирамида – многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды;

 -  правильная пирамида – пирамида, в основании которой правильный многоугольник, и все боковые ребра равны.

Показываются более сложные многогранники, в том числе правильные, полуправильные и звездчатые многогранники. Рассматривается несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

Таким образом, к началу непосредственного изучения темы «Многогранники» учащиеся уже знакомы (на доступном для них уровне) с традиционным материалом по этой теме. Появляется возможность расширить представления учащихся о многогранниках, рассмотрев с ними более подробно правильные, полуправильные и звездчатые многогранники.6

Основная цель данного раздела – ознакомить учащихся с понятием выпуклости и свойствами выпуклых многогранников, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках.

Можно привести примерное тематическое планирование данной темы.

Пункт учебника

Содержание

Кол-во часов

18

Выпуклые многогранники

2

19

Теорема Эйлера

2

20*

Приложения теоремы Эйлера

2

21

Правильные многогранники

2

22*

Топологически правильные многогранники

1

23

Полуправильные многогранники

2

23

Звездчатые многогранники

1

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Данное понятие в учебнике вводится следующим образом: многогранник называется выпуклым, если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок. Далее рассматриваются свойства выпуклых многогранников.

После изучения выпуклых многогранников рассматривается теорема Эйлера и ее приложения. В качестве таких приложений рассматриваются задача о трех домиках и трех колодцах, проблема четырех красок, вводится понятие графа.

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней. Выпуклый многогранник называется полуправильным, если его гранями являются правильные многоугольники (возможно, и с разным числом сторон), причем в каждой вершине сходится одинаковое число граней. Рассматриваются пять видов правильных многогранников, некоторые виды полуправильных и четыре звездчатых многогранника.

При изучении правильных, полуправильных и звездчатых   многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные

средства. 7

5. Учебник Александрова А.Д.

Данный учебник предназначен для классов и школ с математической специализацией, он дает богатую математическую информацию, развивает ученика, но является достаточно трудно усваиваемым. В учебнике рассматриваются такие темы, которые в основной школе  не доступны даже для  «сильных» учеников, например, сферическая геометрия.

Отметим особенности изучения многогранников в данном учебнике. Во-первых, многогранники изучаются после круглых тел. Во-вторых, при изучении многогранника и его элементов прослеживается связь с многоугольником. Вследствие чего возможны две последовательности изложения темы: 1) обобщить понятие многоугольника, затем разобрать аналогичные вопросы в пространстве; 2) пользуясь §21 учебника, дать сначала определение многогранника, далее обобщить понятие многоугольника. Особенностью является  введение двух определений призмы (как в учебниках, рассмотренных выше, и как цилиндр, в основании которого лежит многоугольник), причем доказывается равносильность этих определений. Аналогично дается другое определение пирамиде: как конус с многоугольником в основании. §24 «Выпуклые многогранники» впервые излагается в столь серьезном виде, рассматривается вопрос равносильности  двух определений выпуклого многогранника. Изложение темы «Правильные многогранники» также отличается от ее изложения в учебниках по геометрии других авторских коллективов: сначала показываются пять типов правильных многогранников, построением доказывается, что все пять типов правильных многогранников существуют, и только после этого доказывается, что других правильных выпуклых многогранников быть не может. Обычно же после определения сразу доказывалась теорема, а существование показывалось позже, что усложняло методику рассказа.

Таким образом, учебник содержит очень богатый теоретический материал по многогранникам, которого нет в других учебниках по геометрии, также он может быть использован как учебник для дополнительного изучения в основной школе. Ниже в таблице приведено примерное поурочное планирование материала.

№ урока

Содержание учебного материала

1-2

Обобщение понятие многоугольника. Многогранник.

3-5

Призма, параллелепипед. Упражнения.

6-10

Пирамида. Виды пирамид. Упражнения.

11-13

Выпуклые многогранники.

14-16

Теорема Эйлера. Развертка выпуклого многогранника.

17-19

Правильные многогранники.

Подводя итоги выше сказанного, можно сказать, что во всех учебниках при изучении многогранников рассматривается практически одни и те же основные темы: определение многогранника, выпуклые многогранники, призма, пирамида, правильные многогранники. Разница лишь в глубине изучения этих вопросов: в гуманитарных классах тема изучается более поверхностно, практически без доказательств, в классах с углубленным изучением математики  данный вопрос рассматривается глубоко, с научными обоснованиями. 8

В настоящее время во многих общеобразовательных школах идет обучение по учебнику Атанасян Л.С. Геометрия, поэтому при выборе содержания можно опираться на него.

Заключение

Целью данной работы было рассмотрение  особенностей методики изучения темы «Многогранники» в курсе стереометрии 10-11 классов. В связи с чем  были выполнены следующие задачи: были рассмотрены различные подходы к определениям многогранника, выпуклого многогранника и правильного многогранника, а также были сделаны выводы о том, какие подходы целесообразнее использовать в школе. Кроме того, были рассмотрены особенности изучения темы в учебниках разной направленности: общеобразовательной, гуманитарной, с математическим уклоном. Были рассмотрены также различные средства наглядности, которые могут быть использованы при изучении данной темы. И, наконец, были подобраны опорные задачи, которые можно использовать на уроке при изучении данной темы.9

Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более детального изучения отдельных разделов данной темы, а также пропедевтического введения многогранников в курсе математики 5-6 классов.


Список литературы

  1.  Автономова Т.В. Основные понятия и методы школьного курса геометрии: Книга для учителя./ Т.В. Автономова, Б.И. Аргунов. – М.: Просвещение, 1988.
  2.  Александров А.Д. Что такое многогранник? / А.Д. Александров// Математика в школе. – 1981. - № 1-2.
  3.  Александров А.Д. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А.Д. Александров, А.Л. Вернер, В.И. Рыжик. - М.: Просвещение, 1992. – 464 с.
  4.  Атанасян Л.С. Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. - М.: Просвещение, 1998. – 207 с.
  5.  Методика преподавания геометрии в старших классах средней школы. / Под. ред. А.И. Фетисова. - М.: Просвещение, 1967. – 301 с.
  6.  Погорелов А.В. Геометрия: Учеб. для 7-11 кл. сред. шк. / А.В. Погорелов. - М.: Просвещение, 1990. – 384 с.
  7.  Смирнова И.М. В мире многогранников: Кн. для учащихся. / И.М. Смирнова. – М.: Просвещение, 1995. – 144 с.
  8.  Смирнова И.М. Геометрия: Учеб. пособие для 10-11 кл. гуманит. Профиля. / И.М. Смирнова. – М.: Просвещение, 1997. – 159 с.
  9.  Смирнова И.М. Об определении понятия правильного многогранника. / И.М. Смирнова. // Математика в школе. – 1995. - № 3.
  10.  Смирнова И.М. Уроки стереометрии в гуманитарных классах. Изучение многогранников. / И.М. Смирнова. // Математика в школе. – 1994. - № 4.

1 Александров А.Д. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А.Д. Александров, А.Л. Вернер, В.И. Рыжик. - М.: Просвещение, 1992. – с. 165

2 Атанасян Л.С. Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений. - М.: Просвещение, 1998. – с. 98

3 Погорелов А.В. Геометрия: Учеб. для 7-11 кл. сред. шк. / А.В. Погорелов. - М.: Просвещение, 1990. – с. 122

4 Методика преподавания геометрии в старших классах средней школы. / Под. ред. А.И. Фетисова. - М.: Просвещение, 1967. – с. 266

5 Атанасян Л.С. Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений. - М.: Просвещение, 1998. – с. 188

6 Смирнова И.М. В мире многогранников: Кн. для учащихся. / И.М. Смирнова. – М.: Просвещение, 1995. – с. 99

7 Смирнова И.М. Геометрия: Учеб. пособие для 10-11 кл. гуманит. Профиля. / И.М. Смирнова. – М.: Просвещение, 1997. – с. 77

8 Александров А.Д. Что такое многогранник? / А.Д. Александров// Математика в школе. – 1981. - № 1-2.

9 Автономова Т.В. Основные понятия и методы школьного курса геометрии: Книга для учителя./ Т.В. Автономова, Б.И. Аргунов. – М.: Просвещение, 1988. – с. 55


Данной работой Вы можете всегда поделиться с другими людьми, они вам буду только благодарны!!!
Кнопки "поделиться работой":

 

Другие работы

617014. тема команд. Компьютер как формальный исполнитель алгоритмов программ.
  Сетевые протоколы. Сетевые протоколы. Сетевые протоколы. Основные протоколы прикладного уровня.
617015. лето 2014 Весна – особое время года хочется быть самой прекрасной самой очаровательной и самой женственной.
  Какой образ примерить в новом модном сезоне Какой выбрать макияж Изучаем тенденции сезона весналето 2014 и преображаемся Добавьте красок губам Начнем с главной и пожалуй самой эффектной тенденции – яркого цвета губ. Визажисты все как один рекомендуют в э
617016. тематик физик и физиолог.
  Автор теории объясняющей образование и движение небесных тел вихревым движением частиц материи вихри Декарта. Ввёл представление о рефлексе дуга Декарта. В основе философии Декарта дуализм души и тела мыслящей и протяжённой субстанции. Общая причина движ
617017. тема впрыска работает к ней прикасаться не надо.
  Промывка системы впрыска топлива У автолюбителей сформировалось стойкое убеждение что пока система впрыска работает к ней прикасаться не надо. В первую очередь это важно для нас ведь качество российского топлива уже давно стало притчей во языцех. Содержа
617018. . Каков характер главных источников развития личности врожденный или приобретенный2.
  Теория личности пытается не только объяснить но и предсказать поведение человека. Основные вопросы на которые должна ответить теория личности заключаются в следующем: 1. Каков характер главных источников развития личности врожденный или приобретенный2.
617019. Безопасное колесо2013.
  2 Многоэтапные городские личнокомандные соревнования на лучшее знание правил дорожного движения среди обучающихся СанктПетербурга на кубок ГБОУ ДООТЦ СПБ Балтийский берег. 1 этап 2 этап 3 этап 19 октября 2013 года декабрь 2013 года март 2014 года ГБОУ ДО
617020. Тема 1. Основные понятия общества и государства 1.
  Основные понятия общества и государства 1. Предпосылки появления государства и права Для того чтобы уяснить сущность государства и права необходимо кратко проследить процесс их возникновения. Первые же государства в мире стали возникать лишь в 32 тысячел
617021. то бормочет во сне.
  Как раз по ней на возбужденные крики товарищей спешили княжич и Кузань. Кузань отпрянул за ствол огромного дуба. В ужасе закрыл Кузань глаза и прошептал: Великий Шкай помоги Опомнился он от торжествующих криков охотников. – Наши следы никогда не укажут в
617022. Для диагностики перцептивных способностей может быть использован различный экспериментальный материал р.
  В качестве материала для диагностикиуровня развития перцептивных процессов могут использоваться рисунки и различные геометрические построения плоские и объемные фигуры записи звуков речиотрезки времени и т. Восприятие времени Оценка точности восприятия в
загрузка...

RSS-лента